Limit Switches

Specifications, Directives and Standards 4
Terminology 6
Travel and operating diagrams 7
Description, Symbols and Technical Data - Plastic Casing IP 65 8
Description, Symbols and Technical Data - Metal Casing IP 66 10
Description, Symbols and Technical Data - Plastic and Metal Casing IP 67 12
Implementation 14
Utilization Precautions 15
Accessories and Special Versions 16
Selection Table
AP_T Series (30 mm. Plastic Casing - EN 50047) 18
DP_T Series (50 mm . Plastic Casing) 25
AM_F Series (30 mm . Metal Casing - EN 50047) 30
DM_F Series (50 mm . Metal Casing) 33
BP_H Series (40 mm . Plastic Casing - EN 50041) 36
BM_P Series (40 mm . Metal Casing) 41
CM_P Series $(60 \mathrm{~mm}$. Metal Casing) 42
BM_E Series (40 mm. Metal Casing - EN 50041) 43
CM_E Series (60 mm . Metal Casing) 48
EP1G Series (30 mm . Plastic Casing) 54
EP2G Series (35 mm . Plastic Casing) 58
EM1G Series (30 mm . Metal Casing) 62
EM2G Series (35 mm . Metal Casing) 66
Limit switches for special applications 70
Safety Limit Switches
Summary of available lines 72
Foot Switches
Description PS... / PD... Series 80
Accessories 81
Description MP_Series 82
Technical Data 83

LIMIT

SWITCHES

The Comepi products listed in this catalogue are developed and manufactured according to the rules set out in IEC international publications and EN European standard.

Specifications

- International Specifications

The International Electrotechnical Commission, IEC, which is part of the International Standards Organization, ISO, publishes IEC publications which act as a basis for the world market.

- European Specifications

The European Committee for Electrotechnical Standardisation (CENELEC), grouping 18 European countries, publishes EN standards for low voltage industrial apparatus.
These European standards differ very little from IEC international standards and use a similar numbering system. The same is true of national standards. Contradicting national standards are withdrawn.

- Harmonised European Specifications

The European Committees for Standardisation (CEN and CENELEC), grouping 18 European countries, publish EN standards relating to safety of machinery.

- Specifications in Canada and the USA

These are equivalent, but differ markedly from IEC, UTE, VDE and BS specifications.
UL Underwriters Laboratories (USA)
CSA Canadian Standards Association (Canada)

Remark concerning the label issued by the UL (USA). Two levels of acceptance between devices must be distinguished.
"Recognized" Authorised to be included in equipment, if the equipment in question has been entirely mounted and wired by qualified personnel. They are not valid for use as "General purpose products" as their possibilities are limited.
They bear the mark: $\mathbf{T B}^{\circ}$
"Listed" Authorised to be included in equipment and for separate sale are "General purpose products" components in the USA. They bear the mark: (4L)

European Directives

The guarantee of free movement of goods within the European Community assumes elimination of any regulatory differences between the member states. European Directives set up common rules that are included in the legislation of each state while contracditory regulations are cancelled.

There are three main directives:

- Low Voltage Directive 73/23/EEC, amended by Directive 93/68/EEC concerning electrical equipment from 50 to 1000 V a.c. and from 75 to 1500 V d.c. This specifies that compliance with the requirements that is sets out is acquired once the equipment conforms to the standards harmonised at European level: EN 60947-1 and EN-60947-5-1 for limit switches.
- Machines Directives - 89/392/EEC, 91/368/EEC, 93/44/EEC, 93/68/EEC - defining main safety and health requirements concerning design and manufacture of the machines and other equipment including safety components in European Union countries.
- Electromegnetic Compatibility Directive 89/336/EEC, amended by Directive 92/31/EEC and Directive 93/68/EEC concerning all electrical devices likely to create electromagnetic disturbances.

Signification of CE marking:

CE marking	must not be confused with a quality label.
CE marking	placed on a product is proof of conformity with the European Devices concerning the product.
CE marking	is part of an administrative procedure and guarantees free movement of the product within the European Community.

Standards

- International Standards

IEC 947-1	Low-voltage switchgear and controlgear - Part 1: General Rules (CEI EN 60947-1).
IEC 947-5-1	Low-voltage switchgear and controlgear - Part 5: Control circuit devices and switching elements - Section 1: Electromechanical control cir-
	cuit devices (CEI EN 60947-5-1) - Chapter 3: Special requirements for control switches with positive opening operation.
IEC 204-1	Electrical equipment on industrial machines - Part 1: General requirements (CEI EN 60204-1).
IEC 204-2	Electrical equipment on industrial machines - Part 2: Item designation and examples of drawings, diagrams, tables and instructions.
IEC 529	Degrees of protection provided by enclosure (IP code) (CEI EN 60529).

- European Standards

EN 50005	Low-voltage switchgear and controlgear for industrial use - Terminal marking and distinctive number: General rules (CEI 17-17).
EN 50013	Low-voltage switchgear and controlgear for industrial use - Terminal marking and distinctive number for particular control swithches (CEl 17-
	17).
EN 50041	Low-voltage switchgear and controlgear for industrial use - Control switches - Position switches 42,5 x 80 - Dimensions and characteristics.
EN 50047	Low-voltage switchgear and controlgear for industrial use - Control switches - Position switches 30×55 - Dimensions and characteristics.
EN 60947-1	Low-voltage switchgear and controlgear for industrial use - Part 1: General rules (CEI EN 60947-1).
EN 60947-5-1	Low-voltage switchgear and controlgear for industrial use - Part 5: Control circuit devices and switching elements - Section 1:
	Electromechanical control circuit devices (CEI EN 60947-5-1) - Chapter 3: Special requirements for control switches with positive opening EN 60529operation. Degrees of protection provided by enclosures (IP code). EN 61058-1 Switches for appliances. Part. 1: general requirements.

- Harmonised European Standards

These standards are common to all European Union and EFTA (European Free Trade Association) countries. They were prepared (prEN project) and written (EN final text) by the European standardisation committees CEN or CENELEC. Harmonised European standards were drawn up to allow definition of the rules and technical means to be used to satisfy the main safety requirements on machines and thus guarantee conformity with the Machines Directive. Compliance with a harmonised European standard is presumption of conformity with the relevant Directive.
European standards relating to machine safety are divided into groups (A, B and C types)

Type A standards:	basic standards: setting out design principles and the general aspects valid for all machine types.
EN 292-1	Safety of machinery - Basic concepts, general principles for design - Part 1: Basic terminology, methodology.
EN 262-2 and EN 292-2/A1	Safety of machinery - Basic concepts, general principles for design - Part 2: Technical principles and specifications.
EN 1050	Safety of machinery - Principles for risk assessment.
Type B standards:	group standards:
B1:	dealing with specific safety aspects.
EN 60204-1	Safety of machinery - Electrical equipment of machines - Part 1: General requirements.
EN 954-1	Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design.
B2:	dealing with components and devices determining safety.
EN 1088	Safety of machinery - Interlocking devices associated with guards - Principles for design and selection

- American Standards

UL 508 Standard for safety. Industrial control equipment.
CSA - C22.2 No. 14-95 Industrial control equipment. Industrial products.

Double Insulation

Class II materials, according to IEC 536, are designed with double insulation. This measure consists in doubling the functional insulation with an additional layer of insulation so as to eliminate the risk of electric shock and thus not having to protect elsewhere. No conductive part of "double insulated" material should be connected to a protective conductor.

Positive Opening Operation Θ

A control switch, with one or more break-contact elements, has a positive opening operation when the switch actuator ensures full contact opening of the breakcontact. For the part of travel that separates the contacts, there must be a positive drive, with no resilient member (e.g. springs), between the moving contacts and the point of the actuator to which the actuating force is applied.
The positive opening operation does not deal with N.O. contacts.
Control switches with positive opening operation may be provided with either snap action or slow action contact elements. To use several contacts on the same control switch with positive opening operation, they must be electrically separated from each other, if not, only one may be used.
Every control switch with positive opening operation must be indelibly marked on the outside with the symbol: Θ.

Snap Action

Snap action contacts are characterised by a release position that is distinct from the operating position (differential travel). Snap breaking of moving contacts is independent of the switch actuator's speed and contributes to regular electric performance even for slow switch actuator speeds.

Slow Action

Slow action contacts are characterised by a release position that is the same as the operating position. The switch actuator's speed directly conditions the travel speed of contacts.

Contact shape according to IEC 947-5-1.

Change-over contact elements with 4 terminals must be indelibly marked with the corresponding Za or Zb symbol as in the diagrams below.

Utilization Category

AC-15: switching of electromagnetic loads of electromagnets using an alternating current ($>72 \mathrm{VA}$).
DC-13: switching of electromagnets using a direct current.

Terminals

Limit switches with metal casings must have a terminal, for a protective conductor, that is placed inside the casing very close to the cable inlet and must be indelibly marked.

Minimum Actuation Force/Torque

The minimum amount of force/torque that is to be applied to the switch actuator to produce a change in contact position.
Minimum Force/Torque to achieve Positive Opening Operation
The minimum amount of force/torque that is to be applied to the switch actuator to ensure positive opening operation of the N.C. contact.

$\mathbf{P}_{\mathbf{0}}$ Free position:

position of the switch actuator when no external force is exerted on it.

\mathbf{P}_{A} Operating position:

position of the switch actuator, under the effect of force F1, when the contacts leave their initial free position.

$\mathbf{P}_{\mathbf{P}}$ Positive opening position:

position of the switch actuator from which positive opening is ensured.

L Max. travel position:

maximum acceptable travel position of the switch actuator under the effect of a force F1.

$\mathbf{P}_{\mathbf{R}}$ Release position:

position of the switch actuator when the contacts return to their initial free position.

C_{1} Pre-travel:

distance between the free position P_{0} and the operating position P_{A}.

$\mathbf{C}_{\mathbf{P}}$ Positive opening travel:

minimum travel of the switch actuator, from the free position, to ensure positive opening operation of the normally closed contact.

\mathbf{C}_{2} Over-travel:

distance between the operating position P_{A} and the max. travel position L.
$C_{\text {L Max. }}$ Mavel:
distance between the free position P_{0} and the max. travel position L.
\mathbf{C}_{3} Differential travel (C1-C4):
travel difference of the switch actuator between the operating position P_{A} and the release position P_{R}.
\mathbf{C}_{4} Release travel:
distance between the release position P_{R} and the free position P_{0}.

Diagram for snap action contacts:

Diagram for non-overlapping slow action contacts:

Note: for slow action contacts, $\mathrm{C}_{3}=0, \mathrm{C}_{1-1}=$ pre-travel of contact 21-22, $\mathrm{C}_{1-2}=$ pre-travel of contact 13-14

Examples:

BM1E13211

(snap action contacts)

BM1E41Z11

(snap action contacts)

BM1E11X11
(non-overlapping slow action contacts)

Diagram in millimetres/cam travel

Diagram in degrees/lever rotation

Diagram in millimetres/plunger travel

AP... / BP... / DP... Limit Switches
Double Insulation - Plastic Casing IP65

Applications

Easy to use, electromechanical limit switches offer specific qualities:

- Visible operation.
- Able to switch strong currents (10 A conventional thermal current).
- Electrically separated contacts.
- Precise operating points (consistency)
- Immune to electromagnetic disturbances.

They are purpose-built detection devices thanks to these characteristics:

- Presence/absence.
- Positioning and travel limit.
- Objects passing/counting.

Description

Limit switches, which are made of reinforced UL-V0 thermoplastic fiber-glass, offer double insulation and a degree of protection of IP65.
The casing come in 3 dimension: - AP... 30 mm . width - BP... 40 mm . width - DP... 50 mm . width
 - 50 mm . width

Mounting the casing
$2 \times \mathrm{M} 4$ screws on top part for 30 mm . width

- 2 or $4 \times$ M5 screws for 40 mm . width
- 2 or $4 \times$ M4 screws on top part for 50 mm . width

Contact Block:

- Contact configuration: NO + NC, 2 NO, 2 NC
- Positive opening operation
- Snap action or slow action
- Zb shape: the 2 contacts are electrically separated
- Only for BP series

Block of 3 contacts with the following configuration: $3 \mathrm{NO}, 3 \mathrm{NC}, 2 \mathrm{NO}+1 \mathrm{NC}, 1 \mathrm{NO}+2 \mathrm{NC}$

Connecting terminals:

- Block of 2 contacts: M3.5 (+, -) pozidriv 2 screw
- Block of 3 contacts: M3 (+, -) screw
- Screw head with captive cable clamp
- Markings conform with IEC 947-1, IEC 947-5-1

EN 50005 and 50013 standards

A variety of operating heads:

- Plain plunger
- Roller plunger
- Roller lever, adjustable or not, etc.

Assembled using $4 \times \emptyset 3$ screws for 30 and 50 mm width
Assembled using $4 \times \emptyset 4$ screws for 40 mm width

[^0]General Technical Data

Standards	Plastic Casing
	Devices conform with international IEC 947-5-1 and European EN 60 947-5-1 standards
Certifications - Approvals	UL - CSA - IMQ
Air temperature near the device	
- during operation ${ }^{\circ} \mathrm{C}$	$-25 . .+70$
- for storage ${ }^{\circ} \mathrm{C}$	$-30 \ldots+80$
Climatic withstand	According to IEC 68-2-3 and salty mist according to IEC 68-2-11
Mounting positions	All positions are authorised
Shock withstand (according to IEC 68-2-27 and EN 60 068-2-27)	50 g ((1/2 sinusoidal shock for 11 ms) no change in contact position
Resistance to vibrations (acc. to IEC 68-2-6 and EN 60 068-2-6)	$25 \mathrm{~g}(10 \ldots 500 \mathrm{~Hz})$ no change in position of contacts greater than $100 \mu \mathrm{~s}$
Protection against electrical shocks (acc. to IEC 536)	Class II
Degree of protection (according to IEC 529 and EN 60529)	IP 65
Consistency (measured over 1 million operations)	0.1 mm (upon closing point)
Minimum actuation speed m/s	Slow action contacts 0.060 / Snap action contacts 0.001

Electrical Data

Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$ - according to IEC 947-1 and EN 60-947-1 - according to UL 508 and CSA C22-2 $\mathrm{n}^{\circ} 14$		500 V (degree of pollution 3)A $600, \mathrm{Q} 600$			
Rated impulse withstand voltage $\mathbf{U}_{\text {imp }}$ (according to IEC 947-1 and EN 60 947-1)	kV	6			
Conventional free air thermal current $\mathrm{I}_{\text {th }}$ (according to IEC 947-5-1) $\theta<40^{\circ} \mathrm{C}$	A	10			
Short-circuit protection $\mathbf{U}_{\mathbf{e}}<500 \mathrm{~V}$ a.c. $-\mathrm{gG}(\mathrm{gl})$ type fuses	A	10			
Rated operational current					
$\mathbf{I}_{\mathbf{e}} /$ AC-15 (according to IEC 947-5-1)	$24 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ A	10			
	$120 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ A	6			
	$230 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ A	3.1			
	$240 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ A	3			
	$400 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ A	1.8			
le / DC-13 (according to IEC 947-5-1)	24 V - d.c. A	2.8			
	125 V - d.c. A	0.55			
	250 V - d.c. A	0.27			
Switching frequency	Cycles/h	3600			
Load factor		0.5			
Resistance between contacts	$\mathrm{m} \Omega$	25			
Connecting terminals		M3.5 (+, -) pozidriv 2 screw with cable clamp			
Terminal for protective conductor		-			
Connecting capacity	1 or $2 \times \mathrm{mm}^{2}$	0.75 ... 2.5			
Terminal marking		According to EN 50013			
Mechanical durability	Millions of operations			$\left.\begin{array}{l\|l} \hline 30 \\ 25 \\ 10 \end{array}\right\}^{B P \cdot \mid}$	$\left\{\begin{array}{l} 11 \ldots 13 ; 31 \ldots 33 \\ 41 \ldots 44 ; 51 \ldots 54 ; 61 \ldots . .75 \\ 14 ; 19 ; 35 \ldots 37 ; 91 . . .93 \end{array}\right.$
Electrical durability (according to IEC 947-5-1)		Utilization categories AC-15 and DC-13 (Load factor of 0.5 according to curves below)			

* except for AP/DP•T42, T52, T5200, T55 and T5500: 25 g.
$\longleftarrow \mathrm{IMQ}$ listed values

AC-15 - Snap action

AC-15 - Slow action

DC-13		Snap action	Slow action
		Power breaking for a durability of 5 million operating cycles	
Voltage	24 V	9.5 W	12 W
Voltage	48 V	6.8 W	9 W
Voltage	110 V	3.6 W	6 W

AM... / DM... / BM... / CM... Limit Switches
Metal Casing IP66

Applications

Easy to use, electromechanical limit switches offer specific qualities:

- Visible operation.
- Able to switch strong currents (10 A conventional thermal current).
- Electrically separated contacts.
- Precise operating points (consistency).
- Immune to electromagnetic disturbances.

They are purpose-built detection devices thanks to these characteristics:

- Presence/absence.
- Positioning and travel limit.
- Objects passing/counting.

Description

The AM... and DM... series are made of zinc alloy (Zamack). The limit switches BM... and CM... series are realized in aluminium material,
therefore they are mechanically more resistant and three times lighter than the ones in zinc alloy. All metal limit switches have a degree protection of IP 66 .
The casing come in 4 dimension:

$$
\begin{array}{ll}
\text { - AM... } 30 \mathrm{~mm} \text {. width } & \text { - BM... } 40 \mathrm{~mm} \text {. width } \\
\text { - DM... } 50 \mathrm{~mm} . \text { width } & \text { - CM... } 60 \mathrm{~mm} . \text { width }
\end{array}
$$

General Technical Data

Electrical Data

* except for AM/DM•F42, F52, F55: 25 g. - ** $^{\text {** }}$ except for AM/DM•F52, F55, F73, F74 and BM/CM•E54, P92, P93, E92, E93: the degree of protection is IP65
$\square \mathrm{IMQ}$ listed values

AC-15 - Snap action

AC-15 - Slow action

DC-13		Snap action	Slow action
		Power breaking for a durability of 5 million operating cycles	
Voltage	24 V	9.5 W	12 W
Voltage	48 V	6.8 W	9 W
Voltage	110 V	3.6 W	6 W

Applications

Easy to use, electromechanical limit switches offer specific qualities:

- Visible operation.
- Able to switch strong currents (5 A conventional thermal current).
- Electrically separated contacts.
- Precise operating points (consistency).
- Immune to electromagnetic disturbances.

They are purpose-built detection devices thanks to these characteristics:

- Presence/absence.
- Positioning and travel limit.
- Objects passing/counting.

Description

These limit switches, made in thermoplastic material (EP... series) or diecast zinc alloy (EM... series), sealed with epoxy resin at the base on the box, offer a degree of protection IP67
The casing come in 2 dimensions: -EP1... / EM1... 30 mm . width

$$
\text { - EP2... / EM2... } 35 \text { mm. width }
$$

Contact block

Z: Zb Snap action $1 \mathrm{NO}+1 \mathrm{NC}$
X: Zb Slow action non-overlapping late make $1 \mathrm{NO}+1 \mathrm{NC}$

Plastic and Metal Casing IP67

General Technical Data

Electrical connection:

Standard: 1 m . PVC cable $4 \times 0,75 \mathrm{~mm}^{2}$ (EP... series)
1 m . PVC cable $5 \times 0,75 \mathrm{~mm}^{2}$ (EM... series)
On request: All EP.../EM... limit switches can be supplied with different cable types and lenghts according to the following ordering details

[^1]

Lever round turning: AP...; BP...; DP...; AM...; DM...; EP...; EM...

Lever roiund turning: BM....; CM...

Head orientation: all series (EP and EM series: $\mathbf{1 8 0}^{\circ}$ only)

Free position adjustment 10 in 10° of lever: AP...; DP...; AM...; DM...; EP...; EM..

Free position adjustment 9 in 9° of lever: BP...

Free position adjustment 9 in $\mathbf{9}^{\circ}$ of lever BM...; СМ...

BP...; BM...; CM... operating mode selection only

Plain Plunger

Correct

Incorrect

Roller Plunger or Roller Lever

Correct

Correct

Incorrect

Incorrect

AP... / AM... / DP... / DM... special versions

The operating heads used in plastic limit switches AP and DP series have nthe same dimensions of the ones used in the corresponding metal AM and DM series. It is therefore possible to supply "mixed" versions, that is:

- plastic operating head on metal casing
- metal operating head on plastic casing

These "mixed" versions can be demanded as follows

Examples:

For further information, please contact our technical department.

Spare parts

Spare components can be supplied upon request.
componenti elettrici per industria

Spacers

This accessory, made of polymer glass-reinforced resin,allows the lever to operate with a different offset.

In order to install this accessory a longer screw is needed (delivered along with ther spacer).

Cable glands - Blanking plugs - Thread adapters

The use of correct clable gland (or blanking plug in case of unused cable inlets) is recommended if the product is installed in an environmental place in which a protection degree against water or dust is needed. Comepi's cable glands and blanking plugs are realized to guarantee protection degree of IP 66.
Thread adapters are available in order to reach the customers' request. The adapters must always be used in case a conduit connection directly on the limit switch is needed. Different adapters can be supplied upon request.

[^0]: * In AP... and DP... series, the $1 / 2$ " NPT thread is obtained by the use of a plastic adapter (delivered not mounted).

[^1]: Examples
 EM1G11Z030: 30 mm . width limit switch - plain plunger - snap action contact block - 3 m . standard cable.
 EM1G11ZU: $\quad 30 \mathrm{~mm}$. limit switch - plain plunger - snap action contact block - 1 m . UL cable.
 EM1G11Z040U: 30 mm . width limit switch - plain plunger - snap action contact block - 4 m . UL cable.

